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For any crystal structure that can be viewed as a low-symmetry distortion of

some higher-symmetry parent structure, one can represent the details of the

distorted structure in terms of symmetry-adapted distortion modes of the parent

structure rather than the traditional list of atomic xyz coordinates. Because most

symmetry modes tend to be inactive, and only a relatively small number of mode

amplitudes are dominant in producing the observed distortion, symmetry-mode

analysis can greatly simplify the determination of a displacively distorted

structure from powder diffraction data. This is an important capability when

peak splittings are small, superlattice intensities are weak or systematic absences

fail to distinguish between candidate symmetries. Here, the symmetry-mode

basis is treated as a binary (on/off) parameter set that spans the space of

all possible P1 symmetry distortions within the experimentally determined

supercell. Using the average Rwp over repeated local minimizations from

random starting points as a cost function for a given mode set, global search

strategies are employed to identify the active modes of the distortion. This

procedure automatically yields the amplitudes of the active modes and the

associated atomic coordinates. The active modes are then used to detect the

space-group symmetry of the distorted phase (i.e. the type and location of each

of the parent symmetry elements that remain within the distorted supercell).

Once a handful of active modes are identified, traditional refinement methods

readily yield their amplitudes and the resulting atomic coordinates. A final

symmetry-mode refinement is then performed in the correct space-group

symmetry to improve the sensitivity to any secondary modes present.

1. Introduction

The characterization of structural distortions from powder

diffraction data is a distinct subclass of the broader field of

‘structure determination from powder data’ (SDPD). A

distorted structure can, by definition, be parameterized in

terms of its deviations from a known ‘parent’ structure, and

has a space-group symmetry that is a subgroup of the

symmetry of the parent. Normally, distortions lower symmetry

and increase structural complexity. It is common to define a

structural distortion relative to the experimentally observed

parent structure from which it arises. We note, however, that it

is often more convenient to define a distortion relative to a

more distant parent separated by several phase transitions,

or even a hypothetical parent structure. We use the term

‘distortion’ quite generally here to indicate the presence of

any type of physical order parameter such as atomic displa-

cements, magnetic moments, compositional ordering, lattice

strain etc., which distinguishes the parent and child structures.

Distortions arising from second-order (i.e. continuous) phase

transitions tend to be of special interest, though arbitrary

discontinuous transformations involving one or more super-

posed order parameters also fall within the scope of this work.

After removing the parent symmetries that are broken by

the distortion, those symmetry operations that remain

comprise the ‘distortion symmetry’, which is simply the space-

group symmetry of the distorted structure. Here, it is impor-

tant to distinguish a space group from its ‘type’. The 230

crystallographic space-group types are tabulated in the Inter-

national Tables for Crystallography, Volume A (Hahn, 2005),

whereas a complete space group describes both the symmetry

operators and their actual locations within the crystal. Thus,

there can be multiple ways to remove a portion of the parent

symmetry, each of which yields the same space-group type but

different distortion symmetries by virtue of differences in the

locations of the remaining operators. Pm3m, for example, has

an (a0 = 3a, b0 = 3b, c0 = 3c) maximal subgroup of the same

Pm3m type, but which clearly has a much lower overall

symmetry. A given distortion symmetry can always be iden-

tified by its combination of space-group type, lattice basis (i.e.
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the size/shape of the supercell) and supercell origin relative to

the parent cell, provided that standard origin choices are

employed (Campbell, Stokes, Tanner & Hatch, 2006). In

general, the distortions allowed by different distortion

symmetries are fundamentally distinct.

When the powder diffraction pattern contains sufficient

information, one can treat an unknown distortion like any

other unknown structure: extracting the integrated intensities

and attempting a direct solution of the phase problem via

direct methods, charge flipping, real-space global search or

some hybrid algorithm (David et al., 2002). In many cases,

however, the combination of small peak splittings, weak

superlattice reflections and structural complexity makes it

difficult or impossible to extract reliable intensities, so that

real-space models must then be tested directly against the

entire powder pattern (whole-pattern fitting). This problem

reflects the fact that the number of well measurable and

clearly resolvable Bragg reflections often fails to keep up with

the increased structural complexity during subtle distortions.

For highly complex structures, real-space methods can be

greatly enhanced by the use of global optimization algorithms,

which explore a wide parameter space and are more robust

against getting caught in local minima (Černý & Favre-Nicolin,

2007). Monte Carlo (Evans et al., 2003; Tremayne et al., 1997),

simulated annealing (Deem & Newsam, 1989; Coelho, 2000;

Campbell et al., 1998), parallel tempering (Falcioni & Deem,

1999; Favre-Nicolin & Černý, 2002), genetic algorithms

(Kariuki et al., 1997; Shankland et al., 1997) and various hybrid

approaches have been successfully applied in the broader

context of general SDPD work.

In an ideal case, the space-group type is identifiable from

systematic absences or other considerations, so that the

number of structural variables can be restricted by symmetry

to a manageable number with the help of reasonable

constraints and/or restraints. Unfortunately, the same

problems that inhibit the extraction of useful intensities (too

few resolved/well measured reflections) can also make it very

difficult to conclusively detect systematic absences. Candidate

distortion models therefore have to be generated by trial and

error, which requires a great deal of time, patience and

intuition. The challenge is compounded by the need to

customize constraints and restraints for each distortion model

that are both physically reasonable and appropriate to the

symmetry.

When the distortion symmetry is not known, the trial and

error approach to model building can still be guided by

symmetry principles rather than by brute force. A relatively

simple first step is to try each of the maximal subgroups of the

parent space group (tabulated in International Tables of

Crystallography, Vol. A; Hahn, 2005) to see if the resulting cell

parameters and crystal system are consistent with the size and

shape of the experimentally identified supercell. If not, some

successive chain of maximal subgroups is guaranteed to

produce the correct result, provided that the structure really is

a distortion of the chosen parent. It may, however, be neces-

sary to explore a large number of such chains before unco-

vering the right one.

The development of sophisticated computational tools for

mapping out symmetry-descent chains has helped to make

the symmetry-descent process simpler and more robust

(Carpenter et al., 2010; Evans et al., 2003; Howard & Stokes,

1998; Howard & Zhang, 2003; Zhao et al., 2009). For example,

Bi2Sn2O7 exhibits a high-temperature pyrochlore phase (�)

with space group Fd3m as well as two non-centrosymmetric

distorted pyrochlore phases: an intermediate-temperature �
phase with a 2 � 2 � 2 supercell and a room-temperature �
phase with a 21/2

� 21/2
� 2 supercell (Jones & Knight, 1997;

Shannon et al., 1980). When the two maximal subgroups of

Fd3m consistent with the �-phase metric failed to produce a

good fit (Kennedy et al., 1998), Evans et al. (2003) system-

atically generated a symmetry-descent tree containing all of

the non-centrosymmetric subgroups of the parent �-phase

symmetry that are consistent with the observed �-phase

metric, and which also descend from an intermediate

subgroup consistent with the �-phase metric. They then

created models for each candidate subgroup and performed

combined simulated-annealing refinements against synchro-

tron X-ray and neutron powder data sets in order to discern

the correct monoclinic structure.

Group-theoretical symmetry-mode analysis tools now exist

which generate all of the candidate distortion symmetries of a

parent structure that are consistent with an experimentally

observed supercell and point-group or space-group type

(Campbell, Stokes, Tanner & Hatch, 2006; Campbell, Stokes &

Hatch, 2006). They also generate structural models for each

candidate distortion, thus dramatically reducing the effort

required for trial and error exploration. Most importantly, the

resulting distortion models can either be expressed in terms

of traditional atomic parameters (e.g. atomic coordinates,

moments, occupancies etc.) or in terms of symmetry-mode

amplitudes. The traditional and symmetry-mode parameter

sets are related by a simple linear transformation, such that

one atom can be influenced by many modes, and one mode can

influence many atoms; both parameter sets always provide the

same number of degrees of freedom. In practice, the active-

mode amplitudes can either be calculated from the atomic

positions after the refinement (Orobengoa et al., 2009), or can

be refined directly themselves and used to calculate the atomic

positions at each step (Campbell et al., 2007). Müller et al.

(2010) further demonstrated a parametric refinement in which

the temperature dependencies of the key symmetry modes

were modelled via the direct refinement of their critical

exponents. The importance of the symmetry-mode description

of a distorted structure lies in the fact that most of the modes

available to a distortion tend to be inactive, so that the

essential structural features can be expressed in terms of

a relatively small number of non-zero mode amplitudes

(Campbell et al., 2007; Campbell, Stokes, Tanner & Hatch,

2006; Perez-Mato et al., 2010).

When the symmetry of a distortion is unknown, one might

naively consider a global optimization without symmetry (i.e.

in space group P1) that simply restrains each atom to stay

close to its position in the high-symmetry parent structure.

However the P1 model will, in general, be grossly under-
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determined. In the present work, we demonstrate that one

can readily ‘bootstrap’ a P1-symmetry model that has been

parameterized in terms of symmetry-mode amplitudes. The

systematic elimination of all the inactive symmetry modes is

equivalent to constructing a network of structural constraints,

and greatly simplifies the structure solution by allowing only

the essential degrees of freedom to be explored. The funda-

mental issue that we address here is how to discover which

symmetry modes are inactive without prior knowledge of the

distorted structure.

2. Methods

Rietveld refinements were performed on room-temperature

(RT) powder diffraction data from LaMnO3 and WO3 using

the TOPAS-Academic software package (Coelho, 2007). The

refinements reported here employed a global optimization

strategy best described as ‘repeated local minimization from

random starting values’ (RLM), which is similar to the

approach described by Shankland et al. (2010). This was

accomplished via the ‘continue_after_convergence’ keyword

of TOPAS and custom macros for variable randomization

after each convergence cycle. Displacive symmetry-mode

amplitudes, rather than traditional atomic xyz coordinates,

were refined directly (Campbell et al., 2007). The ISODIS-

TORT software package was used to express the atomic

coordinates as linear functions of the symmetry-mode ampli-

tudes and to export these symbolic relationships in TOPAS

.str format.

A WO3 sample was prepared according to the method

described by Woodward et al. (1997). Approximately 12 g of

reagent-grade WO3 (Alpha Aesar, 99.8% pure) was ground

with a pestle and mortar and placed in a platinum crucible.

This was heated in air to 1273 K and allowed to cool to 298 K

at a cooling rate of 0.25 K min�1. The sample was a green

crystalline powder with no visible yellow impurities. We found

no impurities belonging to the lower-temperature P1-

symmetry phase.

Laboratory X-ray powder data from WO3 were collected

over the range 10–150� 2� on a Bruker D8 Advance diffract-

ometer in Cu K�1 mode with Soller slits and a Lynx-Eye

detector. The data were subsequently corrected to account for

the variable divergence slit, which maintained a 6 mm beam

footprint on the sample. The samples were finely ground and

passed through an 80-mesh sieve onto a zero-background

silicon disc coated in petroleum jelly to ensure good orienta-

tion sampling. RT X-ray powder patterns were recorded over

54 min at 290 K on a sample mounted in an Anton–Parr

HTK1200 furnace attachment. These X-ray powder diffrac-

tion patterns did not have exceptional counting statistics

owing to the experimental configuration. The decision to use

modest-quality data for the current study was deliberate

because it better demonstrates the limits of the novel analysis

method that we present here. Neutron powder diffraction data

on an equivalent batch of WO3 were collected at the HRPD

beamline at the ISIS facility at the Rutherford Appleton

Laboratory (Didcot, UK) over a time-of-flight range of 25–

110 ms using its back-scattering detector bank. The RT

neutron powder pattern was taken from an extremely rapid

variable-temperature sequence of 1 min scans (300 to 85 K)

collected in a CCR cryostat to test instrument performance

and data quality.

The LaMnO3 X-ray diffraction patterns were simulated

from a published model (Rodriguez-Carvajal et al., 1998) and

included various levels of artificial noise. These simulated

patterns had a constant background, a simple peak shape and

zero thermal parameters. All LaMnO3 refinements discussed

here employed the simulated pattern with artificial noise

added, whereas all WO3 refinements employed experimental

data. The WO3 refinements were performed separately against

X-ray and neutron data, and also jointly against both X-ray

and neutron data.

The analysis of each powder pattern began with a Pawley

fit in order to obtain reasonable estimates for the cell para-

meters, the peak profile and the sample height. The peak

shape and background were subsequently improved during

Rietveld refinements of a structural model. When the high-

symmetry phase above the transition is known, one can

instead use a refinement against the high-temperature data

set to obtain an adequate peak shape. All non-structural

parameters were fixed for symmetry-detection work. Because

no significant stoichiometric deviations were expected, all

occupancies were fixed at 1. For WO3, one isotropic thermal

parameter was permitted for W and another for O. These

thermal parameters were estimated from the best fit

amongst several RLM convergences in P1 symmetry and then

fixed.

Only the scale factor and the displacive-mode amplitudes

were allowed to refine when performing the RLM runs, which

consisted of over 1000 convergence cycles. The mode ampli-

tudes were randomized relative to zero after each conver-

gence using a uniform distribution of preset width in order to

ensure good statistical sampling. The selection of the width

used is described below.

3. Results and discussion

3.1. Symmetry-mode description of WO3

The temperature phase diagram of WO3 is quite compli-

cated (Diehl et al., 1978; Woodward et al., 1995; Vogt et al.,

1999). At room temperature, it is reported to have a mono-

clinic P21/n supercell of the cubic (Pm3m) aristotype with ao =

2ac, bo = 2bc and co = 2cc (Tanasaki, 1960; Howard et al., 2002).

The supercell origin is located at (1/2, 0, 1/2) within the parent

cell. Being eight times larger than the cubic parent cell, this

supercell contains a total of 32 atoms and possesses either 24

free displacive variables in P21/n symmetry or 96 free displa-

cive variables in P1 symmetry. Of the 24 displacive symmetry

modes available to RT WO3 in space group P21/n, Campbell et

al. (2007) demonstrated that only five of these modes have

large amplitudes. They further showed that a refinement

including only these five modes produced nearly as good a fit

as a refinement that included all 24 modes.
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If reducing 24 structural variables down to five important

active-mode amplitudes provides an advantage in P21/n, the

advantage of using symmetry modes will be far greater in P1

symmetry where there are 96 displacive degrees of freedom.

Because of low-symmetry mode splitting, however, there will

be six rather than five P1-symmetry counterparts to the five

important P21/n-symmetry modes (listed in Table 1). To

illustrate mode splitting, consider that X�5 is a six-dimensional

irreducible representation (irrep) of the parent cubic sym-

metry at the X = [0, 1/2, 0] point in k-space, and therefore has a

general order parameter direction with six degrees of

freedom, which is indicated as (a; b; c; d; e; f ). Order para-

meter directions are described in more detail elsewhere

(Stokes & Hatch, 1987; Campbell, Stokes, Tanner & Hatch,

2006). A distortion along this general order parameter direc-

tion (OPD) would result in a rather complicated super-

structure having P1 symmetry. The RT distortion with P21/n

symmetry, on the other hand, is achieved via the action of a

special six-dimensional OPD containing only two free para-

meters: (0, 0, a, a, b, �b). This special OPD provides the

parent W atom with two displacive modes (one for a and

one for b), only one of which (the b branch) is shown

to be important (i.e. has a substantially non-zero amplitude

and a significant effect on the diffraction pattern) in RT

WO3. In P1 symmetry, this X�5 ð0; 0; a; a; b;�bÞ½W�T1uðbÞ

mode splits into two modes, X�5 ða; b; c; d; e; f Þ½W�T1uðeÞ and

X�5 ða; b; c; d; e; f Þ½W�T1uðf Þ, which, if they maintained equal

and opposite amplitudes, would describe a structure that

actually has P21/n symmetry. These mode labels indicate an

irrep of the parent space-group symmetry (e.g. X5
�), an OPD

[e.g. ð0; 0; a; a; b;�bÞ] of this irrep, the affected parent atom

(e.g. W), an irrep of the point-group symmetry of the Wyckoff

site of this atom (e.g. T1u) and a specific branch of the OPD

(e.g. b). (Text files containing the symmetry-mode definitions

for RT distortions of WO3 and LaMnO3, relative to a cubic

perovskite parent structure, are included as supplemental

information in TOPAS .str format. These four files contain the

P21/n-symmetry description of monoclinic WO3, the P1-

symmetry description of WO3, the Pnma-symmetry descrip-

tion of LaMnO3 and the P1-symmetry description of

LaMnO3.)1

3.2. WO3 symmetry detection

When the RT structure of WO3 is

represented with 96 displacive modes in

P1 symmetry, the ability to experimen-

tally identify the important modes

(those in Table 1) would enable us to

establish the true P21/n symmetry of the

structure without making any a priori

assumptions. The identification of these

modes is the principal objective of the

present work. Rather than attempting

to achieve a ‘best fit’ of a P1 model to
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Table 1
Important distortion modes in RT WO3 (space-group symmetry P21/n).

Atom
Mode #
(P1) Mode name (P1)

Amplitude
(Å) (P1) Mode name (P21/n)

W 14 X�5 ða; b; c; d; e; f Þ½W�T1uðeÞ �0.47168
�

X�5 ð0; 0; a; a; b;�bÞ½W�T1uðbÞW 15 X�5 ða; b; c; d; e; f Þ½W�T1uðf Þ 0.47168

W 16 M�3 ða; b; c; d; e; f Þ½W�T1uðaÞ 0.73279 M�3 ða; b; 0Þ½W�T1uðaÞ

O 37 Rþ4 ða; b; cÞ½O�EuðaÞ �1.10338 Rþ4 ða; b; 0Þ½O�EuðaÞ

O 38 Rþ4 ða; b; cÞ½O�EuðbÞ 0.83820 Rþ4 ða; b; 0Þ½O�EuðbÞ

O 78 Mþ3 ða; b; cÞ½O�EuðcÞ �1.08814 Mþ3 ð0; 0; aÞ½O�EuðaÞ

Figure 1
P21/n-symmetry fits from final joint X-ray/neutron refinement against RT
diffraction data from WO3: (a) laboratory X-ray data, Rwp = 8.5%, (b)
time-of-flight neutron data, Rwp = 18.9%. Calculated, observed and
difference patterns are shown. Because the lattice parameters, profile
shape and background were included in this refinement, the Rwp values
are lower than those encountered during the structure solution process
described below.

1 Supplementary material for this paper has been deposited in the IUCr
electronic archives (Reference: SC5045). Services for accessing these data are
described at the back of the journal.



experimental diffraction data, which would not be likely to

succeed because of the large number of parameters, we

instead statistically sample a large number of convergence

cycles from randomized starting points (RLM method), and

accumulate the individual parameter values from each

convergence. From these results, we are able to compile a

separate histogram for each of the 96 free displacive-mode

amplitudes. While a mode may converge to an incorrect value

on occasion, it statistically tends toward its true value, which is

manifested as a peak in its amplitude histogram. A peak

whose position clearly deviates from zero is evidence that the

mode is active.

When detecting active modes in P1 symmetry, the global

structural origin needs to either be constrained or restrained

so as not to wander randomly. In this case the origin was

constrained by fixing the three ferroelectric tungsten ��4
modes at zero amplitude. Note that, in the symmetry-mode

description, only ferroelectric modes can translate the origin.

A more sophisticated approach would be to restrain the centre

of mass to stay close to zero.

This approach was first tested against the room-temperature

laboratory X-ray powder diffraction data shown in Fig. 1. All

non-displacive parameters except the scale factor were fixed,

as well as the three ferroelectric tungsten-mode amplitudes,

which left 93 refinable atomic displacement mode amplitudes.

More than 1000 convergence cycles were then run in TOPAS

in RLM mode and histograms were generated for each mode.

We found it helpful to keep the number of convergence cycles

greater than ten times the number of free parameters.

As can be seen from Fig. 2, the histograms of the three

important tungsten modes belonging to the X�5 irrep (#14 and

#15 in Table 1) and the M�3 irrep (#16) have very well defined

peaks at non-zero values, clearly showing that they are active,

while all other tungsten modes have distinct peaks at zero. The

splitting occurs because these modes consistently refine to

large non-zero values, though the sign, or direction, of

displacement is arbitrary from one convergence cycle to the

next. Unfortunately, the combination of these X�5 and M�3
tungsten modes is insufficient for detecting the true P21/n

distortion symmetry in this example: they don’t break enough

symmetry by themselves, but instead produce a 1 � 2 � 2

supercell with orthorhombic space group Pbcm.

Several of the important oxygen modes must be included in

order to lower the symmetry to the true level and must,

therefore, be identified. Oxygen-mode amplitudes are,

however, less well determined by X-ray diffraction data, and

their histograms did not yield well defined peaks, tending

instead to display a relatively uniform distribution over a

broad range of amplitudes. The oxygen-mode histograms

belonging to the Rþ4 irrep (#37 and #38 in Table 1) are what are

needed to achieve the true P21/n distortion symmetry, but are

not well defined by the present X-ray data. Similarly the large-

amplitude oxygen Mþ3 mode (#78), which is not helpful for

identifying the actual symmetry, is not well determined. One

oxygen X�5 mode (#88) is clearly split; and two oxygen M�3
modes (#62 and #63) are slightly split; but these modes don’t

add any new symmetry information to the tungsten X�5 and

M�3 modes discussed above, as they belong to corresponding

branches of the same irreps. Because of the relative insignif-

icance of the large-amplitude Rþ4 oxygen modes in these

modest-quality X-ray powder patterns, we were unable to

clearly detect the P21/n symmetry of RT WO3, which under-

scores the importance of obtaining high-quality data that are

sensitive to all of the important order parameters.

It is, of course, possible to introduce additional chemical

information to help identify the oxygen modes. For example,

in this case we can use restraints to

keep the bond valence sums (Brown &

Altermatt, 1985) at around 6.0 for W

sites and 2.0 for O sites and can include

a simple ‘anti-bump’ penalty function to

prevent O—O distances shorter than

�2.4 Å. Both of these are relatively

unbiased pieces of information and are

designed to restrict the RLM process to

finding chemically plausible structures.

Introduction of these restraints leads to

a significant narrowing of the majority

of the histograms of Fig. 2 and gives

clear indication of the importance of

the Rþ4 and Mþ3 modes. We also found

that the important oxygen modes could

be readily detected from significantly

higher quality X-ray data.

Similar refinements were also per-

formed against very rapidly collected

RT time-of-flight neutron powder

diffraction data (Fig. 1) in order to

achieve greater sensitivity to oxygen

relative to tungsten. In the neutron-
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Figure 2
Multi-convergence histograms for each of the displacive-mode amplitudes of P1-symmetry WO3

based on a refinement against laboratory X-ray data. Histograms above the horizontal black line
correspond to tungsten modes, while those below the black line correspond to oxygen modes. The
horizontal axis of each plot runs from �2.5 to 2.5 Å, with tick marks placed every 1.0 Å (mode
amplitude is defined as root-summed-squared displacement of all affected atoms). A histogram with
a clearly split peak is evidence that the mode is active. The histograms of several important active
modes have been highlighted. The full label for each mode is given in the supplementary
information (for this and all similar figures).



based histograms of Fig. 3, the active oxygen Rþ4 (#37 and #38)

and Mþ3 (#78) modes are clearly identified, while two of the

oxygen modes belonging to the X�5 irrep (#46 and #47) also

display very slight peak splittings, which turn out to be real.

Unfortunately, these modes alone are once again insufficient

to detect the P21/n symmetry. The active W modes could

resolve the matter but are not conclusively split. In addition,

the oxygen M�3 mode (#88) that showed up clearly in its X-ray

histogram is not at all observable in the neutron histogram. As

a result, one should judge its appearance in the X-ray histo-

gram as unreliable (possibly a phantom mode – see below).

Some of the mode histograms in Figs. 2 and 3 that we have

not yet discussed are not nicely shaped as single peaks. Some

modes, for example, have small satellite peaks, indicating that

they tend towards an alternate amplitude in a significant

fraction of the convergence cycles. Owing to the nature of

multi-variable optimization problems, this is to be occasionally

expected, even for modes that actually have zero amplitude.

But by collecting a sufficiently large statistical sample, we are

usually able to distinguish between amplitudes associated with

global versus local minima. While this outcome cannot always

be guaranteed, it is necessary for the success of the method.

The probability of detecting active- versus what we call

‘phantom’-mode amplitudes increases with the quality of the

data and the simplicity of the distorted structure. We will

discuss the observation and elimination of phantom modes in

more detail below.

The separate X-ray and neutron

RLM analyses were followed by a joint

analysis using both X-ray and neutron

data sets, in an effort to achieve good

sensitivity to both oxygen and tungsten

modes. Because the X-ray contribution

to the joint Rwp value was initially

dominant relative to the neutron

contribution, the relative weights of the

two data sets were adjusted to make

their contributions approximately

equal. The refined parameters were as

described above. In this case, we were

able to immediately identify every

large-amplitude mode (both oxygen and

tungsten), along with a number of less

important modes that yielded slightly

split histograms (Fig. 4). No phantom

modes were observed.

As discussed above, the six important

modes identified from the joint X-ray/

neutron histograms in Fig. 4 must be

merged into a smaller set of five

parameters in order to correspond to

the correct P21/n symmetry. In other

words, one of these modes must be

related to one of the others by sym-

metry. In Fig. 4, we can see at a

glance that X�5 ða; b; c; d; e; f Þ½W�T1uðeÞ

and X�5 ða; b; c; d; e; f Þ½W�T1uðf Þ (#14

and #15) have peaks at essentially

equal amplitudes. The two-dimensional

correlation plot in Fig. 5 (bottom panel)

further reveals that these two

mode amplitudes are perfectly anti-

correlated. These modes therefore

prove to be the b and�b components of

the X�5 ð0; 0; a; a; b;�bÞ½W�T1uðbÞ mode

of the P21/n distortion. In contrast, the

top panel shows that modes belonging

to different irreps (e.g. M�3 and X�5 ) are

uncorrelated. The two oxygen Rþ4
modes shown in the middle panel,
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Figure 4
Multi-convergence histograms for each of the displacive-mode amplitudes of P1-symmetry WO3

based on a combined refinement against both laboratory X-ray data and neutron time-of-flight data.
Histograms above the horizontal black line correspond to tungsten modes, while those below the
black line correspond to oxygen modes. The horizontal axis of each plot runs from �2.5 to 2.5 Å,
with tick marks placed every 1.0 Å. The histograms of several important active modes have been
highlighted.

Figure 3
Multi-convergence histograms for each of the displacive-mode amplitudes of P1-symmetry WO3

based on a refinement against neutron time-of-flight data. Histograms above the horizontal black
line correspond to tungsten modes, while those below the black line correspond to oxygen modes.
The horizontal axis of each plot runs from �2.5 to 2.5 Å, with tick marks placed every 1.0 Å. The
histograms of several important active modes have been highlighted.



Rþ4 ða; b; cÞ½O�EuðaÞ and Rþ4 ða; b; cÞ½O�EuðbÞ (#37 and #38), are

clearly anti-correlated, but not perfectly (they have rather

different amplitudes), which tells us that the a and b branches

of this order parameter are not related by symmetry. These

observations are all consistent with the details of Table 1.

Thus, the P21/n distortion symmetry can be clearly and

unambiguously determined.

When all distortion modes were turned off, effectively

restricting the internal symmetry to Pm3m, the value of Rwp

for the combined X-ray/neutron refinement was quite large at

38.0%. The minimum Rwp value encountered during the RLM

runs that included all 93 atomic displacement modes in P1

symmetry was 22.1%. The two-dimensional correlation plots

of Fig. 6 show that peaks in the single-mode histograms are

associated with the lowest Rwp values (i.e. the best fits)

obtained from the RLM runs. When only the five most
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Figure 5
Multi-convergence mode-correlation plots from the combined refinement
of a P1-symmetry WO3 model against both laboratory X-ray data and
neutron time-of-flight data. In the top panel, the tungsten M�3 (a, 0, 0) and
X�5 (0, 0, 0, 0, e, 0) modes (#16 and #14) are both sharply split, but not
correlated to one another because they belong to separate irreps. In the
middle panel, the oxygen Rþ4 (a, 0, 0) and Rþ4 (0, b, 0) modes (#37 and #38)
are strongly anti-correlated, but still independent. In the bottom panel,
the tungsten X�5 (0, 0, 0, 0, e, 0) and X�5 (0, 0, 0, 0, 0, f ) modes (#14 and #15)
are perfectly anti-correlated so as to represent only one independent
parameter within the true symmetry.

Figure 6
Multi-convergence plots for the combined refinement of a P1-symmetry
WO3 model against both laboratory X-ray data and neutron time-of-flight
data, illustrating the correlation of specific mode amplitudes with the
Rwp factor. Top: tungsten X�5 (0, 0, 0, 0, e, 0) mode #14. Middle: oxygen
Rþ4 (a, 0, 0) mode #37. Bottom: oxygen ��4 (0, 0, c) mode #27.



important modes were included and the

P21/n symmetry was imposed, Rwp

increased slightly to 22.4%. Subse-

quently turning on all of the secondary

modes available in P21/n symmetry (24

modes in total), Rwp dropped to a final

value of 22.1%, equivalent to the lowest

Rwp from the P1-symmetry RLM runs.

3.3. WO3 structure determination

Once the important active modes

have been identified, the structure has

essentially been solved by virtue of the

fact that we have refined a model

containing only these modes. It is a straightforward matter to

then decide the space-group symmetry of the resulting struc-

ture, though we have not yet explained how this is done. It is

helpful to imagine activating the important modes one at a

time. Upon invoking the first important mode (i.e. order

parameter component), using a package like ISODISTORT,

the resulting distortion symmetry will include this mode as a

symmetry-allowed degree of freedom. Additionally, any

secondary modes that are permitted to operate within this

distortion symmetry will also be automatically included with

it. If the total mode list contains all of the important modes

that have been identified, the process is complete. If not, one

continues invoking additional important modes, each of which

will further lower the distortion symmetry, until all of the

important modes are included. The resulting distortion

symmetry will be the correct one. In practice, there is a much

easier way to determine the distortion symmetry. After

refining the model that includes only the active modes, one can

simply employ a symmetry-detection tool like MISSYM/

ADDSYM (Le Page, 1987), KPLOT (Hannemann et al., 1998;

Hundt et al., 1999) or FINDSYM (Stokes & Hatch, 2004). This

approach readily identified the correct P21/n distortion

symmetry of RT WO3.

After the correct symmetry has been identified based on a

handful of important modes, one can then free up all of the

less important modes that are still permitted within that

distortion symmetry. These small-amplitude contributions

should lead to the most complete structure description,

provided that the information content of the powder pattern is

sufficient to support them.

3.4. LaMnO3

In order to further explore the limitations of our approach,

we next attempted to detect the symmetry of RT LaMnO3

while controlling statistical variables such as data signal-to-

noise level and mode-randomization amplitude. RT LaMnO3

has an orthorhombic supercell with space-group symmetry

Pnma that is related to its cubic perovskite parent lattice by

ao = ac + bc, bo = �ac + bc and co = 2cc. Its supercell has the

same origin as the parent structure. Being four times larger

than the parent cell, the RT LaMnO3 supercell contains a

total of 20 atoms and possesses either seven free displacive

variables in the true Pnma symmetry (two for La and five for

O) or 60 free displacive variables in P1 symmetry. Owing to

mode splitting, the P1-symmetry representation of this Pnma-

symmetry structure has ten free displacive variables (three for

La and seven for O). But only seven of them can be inde-

pendent when maintaining the Pnma symmetry.

For this work, we employed a simulated X-ray diffraction

pattern which was free of systematic experimental errors (Fig.

7). As with the WO3 data, the oxygen modes are more difficult

to detect than the heavy-atom modes. In this case, however,

the modes of the heavy lanthanum atom break enough

symmetry by themselves to generate the observed distortion

symmetry. Luckily, the new oxygen degrees of freedom don’t

lower the symmetry any further. In the discussion that follows,

we will abbreviate the names of the active modes as shown in

Table 2.

Starting with the simulated LaMnO3 data described above,

we fixed the lattice parameters, background shape, peak shape
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Figure 7
Pnma-symmetry fit to low-noise simulated X-ray diffraction data from
LaMnO3 (Rwp = 8.74%). Calculated, observed and difference patterns are
shown.

Table 2
Distortion modes in RT LaMnO3 (space-group symmetry Pnma).

Atom
Mode #
(P1) Mode name (P1)

Amplitude
(Å) (P1) Mode name (Pnma)

La 4 Rþ5 ða; b; cÞ½La�T1uðaÞ 0.06196
�

Rþ5 ða; a; 0Þ½La�T1uðaÞLa 5 Rþ5 ða; b; cÞ½La�T1uðbÞ 0.06196

La 9 Xþ5 ða; b; 0; 0; 0; 0Þ½La�T1uðbÞ 0.54731 Xþ5 ða; b; 0; 0; 0; 0Þ½La�T1uðbÞ

O 37 Rþ4 ða; b; cÞ½O�EuðaÞ �0.83865
�

Rþ4 ða;�a; 0Þ½O�EuðaÞO 38 Rþ4 ða; b; cÞ½O�EuðbÞ 0.83865

O 40 Rþ5 ða; b; cÞ½O�EuðaÞ �0.01886
�

Rþ5 ða; a; 0Þ½O�EuðaÞO 41 Rþ5 ða; b; cÞ½O�EuðbÞ �0.01886

O 45 Xþ5 ða; b; 0; 0; 0; 0Þ½O�EuðbÞ 0.14768 Xþ5 ða; b; 0; 0; 0; 0Þ½O�EuðbÞ

O 53 Mþ2 ð0; 0; aÞ½O�A2uðaÞ 0.36055 Mþ2 ð0; 0; aÞ½O�A2uðaÞ

O 54 Mþ3 ð0; 0; aÞ½O�EuðaÞ �0.89971 Mþ3 ð0; 0; aÞ½O�EuðaÞ



and all other non-displacive parameters except the scale factor

at appropriate values. The three ferroelectric lanthanum-

mode amplitudes that set the origin were also fixed, which left

57 refinable atomic displacement mode amplitudes. More than

1000 RLM convergence cycles were then run in TOPAS, and

histograms were generated for each of the mode amplitudes.

The lanthanum-mode histograms in Fig. 8 have sufficiently

well defined peaks to determine which are active and which

are not, whereas only two oxygen-mode histograms (#45 and

#53) have well defined peaks. One inactive lanthanum Rþ5
mode (#6) and one inactive manganese M�5 mode (#23) also

appeared to split (Fig. 9 provides a closer view of mode

#6). We call these ‘phantom modes’. Such phantom modes

potentially point us to the wrong space-group symmetry and

must be eliminated if we are to detect the true space group.

The phantom modes appear to arise primarily from corre-

lations between inactive modes, such that small amplitudes

applied to these modes approximately cancel one another’s

contributions to the diffraction pattern. The top panel of Fig.

10 illustrates that the amplitudes (but not signs) of the

phantom modes #46 and #47 are correlated. The bottom panel

reveals a somewhat more complicated correlation between

modes #44 and #60, which both exhibit both central and

satellite peaks. The central peaks are indicative of the true

structure, while the correlated satellite

peaks indicate phantom amplitudes due

to correlations that arise in some (but

not all) RLM convergence cycles.

3.5. A procedure to eliminate phantom
modes

A P1-symmetry refinement of a

higher-symmetry structure is inherently

underdetermined. When one atom is

incorrectly placed, the fit may be

improved if a correlated atom is like-

wise incorrectly placed. By creating an

overall tendency towards misplacement,

this correlated behaviour can give rise

to phantom modes, which are inactive

in reality, but still give rise to split mode-

amplitude histograms. Fortunately,

phantom modes have certain char-
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Figure 8
Multi-convergence mode-amplitude histograms for each of the displacive-mode amplitudes of
LaMnO3 in P1 symmetry based on a refinement against simulated low-noise X-ray data. The
horizontal axis of each plot runs from �0.5 to 0.5 Å, with tick marks placed every 0.25 Å. The two
horizontal black lines separate the well defined La modes (top), the Mn modes (middle) and the O
modes (bottom). The histograms of several important active modes have been highlighted.

Figure 9
Zoomed-in view of the multi-convergence mode-amplitude histogram for
phantom mode #6, for which the splitting is not apparent in Fig. 8.

Figure 10
Multi-convergence mode-correlation plots from the refinement of a P1-
symmetry LaMnO3 model against simulated laboratory X-ray data. The
‘X’-shaped characters of these plots reveal correlations in amplitude but
not sign. The top panel shows a modest correlation between the split-
histogram peaks of the oxygen X�3 (a, 0, 0) and X�4 (a, 0, 0) phantom
modes (#46 and #47). The bottom panel reveals a rather strong
correlation between the satellite peaks in the histograms of the oxygen
Xþ5 (a, 0, 0, 0, 0, 0) and M�5 (0, b, 0, 0, 0, 0) phantom modes (#44 and #60).



acteristics that allow us to distinguish them from true active

modes. Most importantly, fixing the amplitude of an active

mode to zero should noticeably increase the R value of the fit,

whereas fixing the amplitude of a phantom mode at zero

would not be expected to increase R under normal circum-

stances. Because phantom modes are inherently correlated,

however, simple R-value tests don’t always make their iden-

tification easy. But with some care, phantoms can be identified

and eliminated by iterative testing. The procedure that we

employed requires that we define some terms as follows:

(i) Initial mode set: an initial collection of modes whose

mode-amplitude histograms are sufficiently well split to be

interesting candidates.

(ii) Current mode set: the set of candidate modes that we

are considering at any given step of the procedure.

(iii) ‘Measure R’: deactivate all modes (i.e. fix the ampli-

tudes to zero) that are not in the mode set, and determine the

minimum number (N) of least-squares cycles needed to

achieve a representative (but potentially underdetermined)

best fit involving these modes. N should be large enough to

be effective, but no larger than necessary, as this process will

be repeated many times. For this example, we obtained a

reasonably good fit in under 1 min on a desktop PC with N =

100 least-squares cycles, which yielded approximately ten

RLM convergences. Record the minimum Rwp value achieved

during the course of these N cycles. This is what it means to

‘measure R’ for a given mode set.

(iv) Mode inclusion run: perform an inclusion test on each

mode that is not part of the current mode set one at a time in a

convenient order (e.g. lexicographical order by name). This

means that, for each mode, we activate it, measure R for the

new mode set (adjust N as needed), and deactivate it again.

Make a chart of measured R values from these tests, sorted

according to ascending R value, and use it to determine which

modes, if any, should be added to the current mode set. The

best candidates will be those that lower R the most relative to

the current mode set (i.e. the modes on the left-hand side of

the graph). Then activate the included modes.

(v) Mode exclusion run: perform an exclusion test on each

mode in the current mode set one at a time in a convenient

order. This means that, for each mode, we note the original

amplitude, deactivate it, measure R for the new mode set

(adjust N as needed), activate the mode again (i.e. allow it to

be refined) and restore its original amplitude. Make a chart of

the measured R values from these tests, sorted according to

descending R value, and use it to determine which, if any,

modes should be deleted from the current mode set. The best

candidates to exclude will be those that raise R the least

relative to the current mode set (i.e. the modes on the right-

hand side of the graph). Then deactivate the excluded modes.

Using Python scripts to run TOPAS from the command

line, we applied the above method to our simulated LaMnO3

data, beginning with 1000 RLM convergence cycles, from

which we created amplitude histograms. Based on the histo-

grams, we selected modes #(4, 5, 9, 23, 27, 33, 45, 46, 47, 53, 54,

59) as our initial mode set, though we could just as easily have

selected a few more or a few less. We treated this step as an

effective mode inclusion run, and followed it with a mode

exclusion run, which led to the elimination of modes #(23, 33,

46). Next, we performed a mode inclusion run (Fig. 11a) in

which we added all modes that had an impact on the R value

greater or equal to that of mode #60 (i.e. those that brought

Rwp below 9.6%), namely modes #(37, 38, 40, 41, 30, 31, 28, 32,

44, 60). Another mode exclusion run (Fig. 11b) led us to

eliminate all modes with an impact less than or equal to that of

mode #40 (i.e. those that took Rwp above 8.8%), namely modes

#(40, 30, 31, 60, 47, 44, 27, 41, 28, 32, 59). Additional inclusion–

exclusion iterations required no changes to the mode set,

which gave us considerable confidence in the result. The final

mode set, #(4, 5, 9, 37, 38, 45, 53, 54), consisted only of large-

amplitude active modes and was sufficient to identify the

correct Pnma symmetry. One can, in principle, repeat the

inclusion and exclusion steps as many times as desired.

The same approach was also applied separately to the X-ray

and neutron data from WO3 described above. For the X-ray

data, the final mode set consisted of three WO3 modes, #(14,

15, 16), while for the neutron data, it consisted of #(14, 15, 16,

37, 38, 46, 47, 78). All of these modes are real – every phantom

mode was eliminated. As per the previous discussion of WO3

histogram analysis, the modes identified from the X-ray data

were insufficient to fully detect the correct P21/n symmetry. In

the case of the neutron data, however, the iterative mode

inclusion and exclusion runs enhanced the sensitivity of the

analysis so that the correct P21/n symmetry was conclusively

established without using the complementary X-ray informa-

tion.

3.6. Short cuts

If we were to skip steps (i) through (iii), i.e. to initially

include all modes, a single mode exclusion run might be
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Figure 11
Mode inclusion and exclusion charts for the 57-parameter LaMnO3

refinement against simulated X-ray data (the three ferroelectric La
modes were deactivated to fix the origin). (a) A mode inclusion run that
began with a nine-mode preliminary set (see text for details) tested the
remaining 48 modes. The bar labelled ‘0’ tested only the current mode set.
The ten modes up to #60 were selected for inclusion. (b) A mode
exclusion run that tested each of 19 modes from the current set led to the
exclusion of all but the first eight modes (up to #4). The first mode in the
exclusion chart is mode #9, which has its top cropped off because it had a
much larger impact than any of the others (Rwp = 27.2%).



sufficient to correctly identify the most important active

modes without picking up any phantom modes. With such a

large number of refined amplitudes, however, each least-

squares cycle can be very slow, and the number of cycles

required to achieve a single convergence can become very

large. We tried this approach on the X-ray data from WO3 and

found it to be computationally prohibitive. Using a small

preliminary mode set based on mode histograms proved far

more efficient. Skipping step (i) and instead starting with an

empty initial mode set also worked quite well for our WO3 and

LaMnO3 examples, ultimately yielding the same final mode

sets with much lower overall computational expense. This is,

perhaps, the best option of all, though a greater number of

inclusion/exclusion iterations are needed because of the lower

quality of the preliminary information.

The generation and use of mode histograms has both pros

and cons. On the one hand, histograms deliver a superior

preliminary mode set that already includes most of the

important modes that can be detected, so that further analysis

is relatively easy. On the other hand, the histograms can be

relatively computationally expensive to generate for large

diffraction data sets and require user interaction. Using a

simplistic RLM approach, without any effort to improve

speed, it took about 72 h to achieve 10 � 96 convergences in

the WO3 example above. We thus recommend trying an empty

preliminary mode set first. If unsuccessful, one can then

generate and visualize mode-amplitude histograms to obtain a

higher-quality initial mode set.

3.7. Signal-to-noise limitations

We also tested the limit to which active-mode detection is

sensitive to noisy diffraction data by refining the LaMnO3

model against simulated X-ray data to which artificial Gaus-

sian noise was added. For each noise level studied, over a

range between zero and the approximate average Bragg-peak

height, histogram sets comparable to those of Fig. 8 were

generated. Because La is a strong scatterer, the active

lanthanum modes proved to be robust against modest noise

levels, but eventually disappeared (i.e. lost their distinctive

histogram splittings) at higher noise levels. The large-

amplitude Rþ5 ða; b; cÞ½La�T1uðbÞ (#5) mode persisted until the

noise level exceeded the heights of all but the strongest Bragg

peak. The weaker oxygen modes were difficult to detect, even

with zero noise, and washed out completely at intermediate

noise levels. It seems intuitive that when the magnitude of the

noise becomes comparable to a mode’s strongest contribution

to the diffraction pattern, the mode’s histogram splitting will

disappear.

Phantom modes tend to become more prevalent at higher

noise levels. This happens because inactive modes can take on

larger amplitudes at higher noise levels without significantly

impacting the R value of the fit. They are then more likely to

be pulled to consistently non-zero amplitudes via correlations

with other modes. After completing a fit that included

phantom-mode number #6 of La, we manually varied its

amplitude while holding all others constant and observed that

the minimum R value occurred at a distinctly non-zero value

(see Fig. 12) for this particular refinement model. The

lowering of R was, however, very small and this effect was

correlated with other trivial aspects of the fitting model such

as peak shape or background description.

3.8. Randomization range

We also explored the optimum displacement width for

the uniform distribution of initial mode-amplitude values.

We tested a variety of widths between 0.01 and 2.0 Å. For each

candidate width, we ran a series of 1000 or more RLM-

mode convergences against an LaMnO3 data set with a

low noise level and generated a histogram of converged Rwp

values, as shown in Fig. 13. The Rwp axis on these histograms

has been shifted so that the lowest Rwp value recorded in

the refinement is defined to be zero. The histograms tend to

be bimodal, possessing a low-R peak of relatively good fits

that are likely to be close to the correct structure, and a

broader high-R peak of relatively poor fits. At 0.75 Å displa-

cement width, the size of the low-R peak indicates that about

one in five of the convergence cycles end with a good fit. A

width of 0.75 Å is probably the highest tolerable value in this

example – reasonable fits are rare beyond that point. As the

frequency of high-R fits to the LaMnO3 data set increased, we

observed that the split peaks in the mode-amplitude histo-

grams of the important modes tended to be washed out,

especially weakly indicated oxygen modes. As the distribution

width decreases towards zero, the frequency of a good fit

increases. If the width of the distribution is too small, however,

it may be impossible for the fit to escape a common local

minimum. For this example, we concluded that a randomiza-

tion range of �0.1 Å provided sufficient randomness for

effective parameter-space exploration, but not so much that

the refinements didn’t converge to a low-R solution. This

width was employed when generating the mode histograms in

Figs. 2, 3, 4 and 8.
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Figure 12
Plot of �Rwp versus mode amplitude for phantom mode #6 of the
LaMnO3 distortion. After allowing the active-mode amplitudes to refine
to their optimal values, they were all fixed, at which point only mode #6
was varied over a narrow range around zero in steps of 0.002 Å. This
analysis was performed at two different simulated noise levels relative to
the height of the strongest Bragg peak: 0.3% (open circles) and 0.9%
(filled circles). Deviations from the expected parabolic behaviour are
more apparent at higher noise levels.



4. Conclusions

In contrast to general structure determination work, the

problem of determining a distorted structure lends itself to a

symmetry-mode parameterization, where the problem is

reduced to determining which modes are active in the

distortion. Assuming that the number of active modes is

relatively small (which it usually is), the subsequent steps of

detecting the distortion symmetry and refining the active-

mode amplitudes is simple and straightforward. The

symmetry-mode description is ideal here because the driving

force responsible for a distortion tends to activate a relatively

small number of modes in order to break the parent symmetry

in a specific way, and because the mode amplitudes tend to be

small (deviations from zero). When the number of active

modes is not relatively small, identifying the largest-amplitude

modes may still permit one to capture the essence of a

distortion and its symmetry.

We used modest-quality experimental laboratory X-ray and

time-of-flight neutron powder data from RT WO3, and also

noisy simulated X-ray powder data from RT LaMnO3, to test

several different methods of identifying active modes and

distinguishing them from phantom modes. In each case, the

symmetry was lowered to P1 within the experimentally

observed supercell and the structural degrees of freedom were

parameterized in terms of symmetry modes. A ‘repeated local

minimization’ (RLM) global optimization strategy was used to

achieve a number of convergences equal to roughly ten times

the number of free parameters, and separate histograms were

generated for each symmetry-mode amplitude. Active modes

were then identified by histograms that peaked at distinctly

non-zero values. Even without generating histograms, we found

that turning one mode on at a time and examining the effect on

R factors allowed us to select a reasonably good initial mode

set, from which the iterative use of inclusion and exclusion

cycles eventually produced a high-quality final mode set.

Data noise was seen to increase the occurrence of phantom

modes (inactive modes that tend toward non-zero ampli-

tudes), which arise due to inter-mode correlations. Phantom

modes are a problem because their inclusion will often result

in a distortion symmetry that is too low. While it goes without

question that good signal-to-noise levels are important, we did

find that phantom modes can be identified and eliminated by

iteratively including and excluding modes while monitoring

the impact on the R value of the fit.

The displacive symmetry-mode analysis that we demon-

strate here is highly analogous to the magnetic symmetry-

mode approach of Wills (2000, 2001, 2005), but there are also

important differences. The symmetry-mode tools employed

here are equally applicable to the determination of other types

of distortions, including atomic displacements, compositional

order–disorder and macroscopic strains. Rather than super-

posing all of the modes belonging to a single irrep defined at

a particular k-point in the Brillouin zone, we superpose all of

the modes of all of the irreps capable of contributing to a P1-

symmetry distortion within the observed supercell, so that

only the translational symmetry associated with the experi-

mental supercell remains. After identifying the modes that are

active, we then detect the true symmetry of the distorted

supercell and employ it in the final refinement.

The symmetry-mode approach to solving distorted struc-

tures has general utility, though its impact is greatest for

challenging problems where other methods fail, particularly

for powder diffraction data from subtle distortions that yield

small peak splittings and weak superlattice reflections, and

especially when the symmetry of the distortion is not known.

When combined with a good global optimization strategy, we

believe that the symmetry-mode approach to whole-pattern

fitting is the best way to squeeze all possible information out of

a powder diffraction data set. The ‘distortion’ problem

essentially reduces to determining which symmetry modes are

active and which are not, and we suggest that genetic algo-

rithms may be especially effective in this context.
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Figure 13
Histograms of Rwp values (relative to the associated minimum values)
were prepared from fits against simulated LaMnO3 X-ray data.
Approximately 1000 RLM convergence cycles were performed for each
of several different randomization amplitudes, which were applied to the
displacive-mode amplitudes. Randomization amplitudes of 0, 0.1, 0.5,
0.75, 1.0 and 2.0 Å are represented here.
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